1地球运动 2大气圈 3岩石圈是上海的!知识结构整理帮忙整理一下

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 15:12:10

1地球运动 2大气圈 3岩石圈是上海的!知识结构整理帮忙整理一下
1地球运动 2大气圈 3岩石圈
是上海的!知识结构整理帮忙整理一下

1地球运动 2大气圈 3岩石圈是上海的!知识结构整理帮忙整理一下
1地球运动: 地球自转
地球存在绕自转轴自西向东的自转,平均角速度为每小时转动15度.在地球赤道上,自转的线速度是每秒465米.天空中各种天体东升西落的现象都是地球自转的反映.人们最早利用地球自转作为计量时间的基准.自20世纪以来由于天文观测技术的发展,人们发现地球自转是不均的.1967年国际上开始建立比地球自转更为精确和稳定的原子时.由于原子时的建立和采用,地球自转中的各种变化相继被发现.现在天文学家已经知道地球自转速度存在长期减慢、不规则变化和周期性变化.
通过对月球、太阳和行星的观测资料和对古代月食、日食资料的分析,以及通过对古珊瑚化石的研究,可以得到地质时期地球自转的情况.在6亿多年前,地球上一年大约有424天,表明那时地球自转速率比现在快得多.在4亿年前,一年有约400天,2.8亿年前为390天.研究表明,每经过一百年,地球自转长期减慢近2毫秒(1毫秒=千分之一秒),它主要是由潮汐摩擦引起的.此外,由于潮汐摩擦,使地球自转角动量变小,从而引起月球以每年3~4厘米的速度远离地球,使月球绕地球公转的周期变长.除潮汐摩擦原因外,地球半径的可能变化、地球内部地核和地幔的耦合、地球表面物质分布的改变等也会引起地球自转长期变化.
地球自转速度除上述长期减慢外,还存在着时快时慢的不规则变化,这种不规则变化同样可以在天文观测资料的分析中得到证实,其中从周期为近十年乃至数十年不等的所谓"十年尺度"的变化和周期为2~7年的所谓"年际变化",得到了较多的研究.十年尺度变化的幅度可以达到约±3毫秒,引起这种变化的真正机制目前尚不清楚,其中最有可能的原因是核幔间的耦合作用.年际变化的幅度为0.2~0.3毫秒,相当于十年尺度变化幅度的十分之一.这种年际变化与厄尔尼诺事件期间的赤道东太平洋海水温度的异常变化具有相当的一致性,这可能与全球性大气环流有关.然而引起这种一致性的真正原因目前正处于进一步的探索阶段.此外,地球自转的不规则变化还包括几天到数月周期的变化,这种变化的幅度约为±1毫秒.
地球自转的周期性变化主要包括周年周期的变化,月周期、半月周期变化以及近周日和半周日周期的变化.周年周期变化,也称为季节性变化,是二十世纪三十年代发现的,它表现为春天地球自转变慢,秋天地球自转加快,其中还带有半年周期的变化.周年变化的振幅为20~25毫秒,主要由风的季节性变化引起.半年变化的振幅为8~9毫秒,主要由太阳潮汐作用引起的.此外,月周期和半月周期变化的振幅约为±1毫秒,是由月亮潮汐力引起的.地球自转具有周日和半周日变化是在最近的十年中才被发现并得到证实的,振幅只有约0.1毫秒,主要是由月亮的周日、半周日潮汐作用引起的.

地球公转
1543年著名波兰天文学家哥白尼在《天体运行论》一书中首先完整地提出了地球自转和公转的概念.地球公转的轨道是椭圆的,公转轨道半长径为149597870公里,轨道的偏心率为0.0167,公转的平均轨道速度为每秒29.79公里;公转的轨道面(黄道面)与地球赤道面的交角为23°27',称为黄赤交角.地球自转产生了地球上的昼夜变化,地球公转及黄赤交角的存在造成了四季的交替.
从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点.对居住的北半球的人来说,当太阳分别经过春分点和秋分点时,就意味着已是春季或是秋季时节.太阳通过春分点到达最北的那一点称为夏至点,与之相差180°的另一点称为冬至点,太阳分别于每年的6月22日前后和12月22日前后通过夏至点和冬至点.同样,对居住在北半球的人,当太阳在夏至点和冬至点附近,从天文学意义上,已进入夏季和冬季时节.上述情况,对于居住在南半球的人,则正好相反.

地极移动
地极移动,简称为极移,是地球自转轴在地球本体内的运动.1765年,欧拉最先从力学上预言了极移的存在.1888年,德国的屈斯特纳从纬度变化的观测中发现了极移.1891年,美国天文学家张德勒指出,极移包括两个主要周期成分:一个是周年周期,另一个是近14个月的周期,称为张德勒周期.前者主要是由于大气的周年运动引起地球的受迫摆动,后者是由于地球的非刚体引起的地球自由摆动.极移的振幅约为±0.4角秒,相当于在地面上一个12×12平方米范围. 由于极移,使地面上各点的纬度、经度会发生变化.1899年成立了国际纬度服务,组织全球的光学天文望远镜专门从事纬度观测,测定极移.随着观测技术的发展,从二十世纪六十年代后期开始,国际上相继开始了人造卫星多普勒观测、激光测月、激光测人卫、甚长基线干涉测量、全球定位系统测定极移,测定的精度有了数量级的提高.
根据近一百年的天文观测资料,发现极移包含各种复杂的运动.除了上述周年周期和张德勒周期外,还存在长期极移,周月、半月和一天左右的各种短周期极移.其中长期极移表现为地极向着西径约70°~80°方向以每年3.3~3.5毫角秒的速度运动.它主要是由于地球上北美、格陵兰和北欧等地区冰盖的融化引起的冰期后地壳反弹,导致地球转动惯量变化所致.其它各种周期的极移主要与日月的潮汐作用以及与大气和海洋的作用有关. 岁差与章动 在外力的作用下,地球的自转轴在空间的指向并不保持固定的方向,而是不断发生变化.其中地轴的长期运动称为岁差,而周期运动称为章动.岁差和章动引起天极和春分点位置相对恒星的变化.公元前二世纪,古希腊天文学家喜帕恰斯在编制一本包含1022颗恒星的星表时,首次发现了岁差现象.中国晋代天文学家虞喜,根据对冬至日恒星的中天观测,独立地发现了岁差.据《宋史·律历志》记载:"虞喜云:'尧时冬至日短星昴,今二千七百余年,乃东壁中,则知每岁渐差之所至'".岁差这个名词即由此而来.
牛顿第一个指出产生岁差的原因是太阳和月球对地球赤道隆起部分的吸引.在太阳和月球的引力作用下,地球自转轴在空间绕黄极描绘出一个圆锥面,绕行一周约需26000年,圆锥面的半径约为23°.5.这种由太阳和月球引起的地轴的长期运动称为日月岁差.除太阳和月球的引力作用外,地球还受到太阳系内其它行星的引力作用,从而引起地球运动的轨道面,即黄道面位置的不断变化,由此使春分点沿赤道有一个小的位移,称为行星岁差.行星岁差使春分点每年沿赤道东进约0.13角秒. 地球自转轴在空间绕黄极作岁差运动的同时,还伴随有许多短周期变化.英国天文学家布拉得雷在1748年分析了20年恒星位置的观测资料后,发现了章动现象.月球轨道面(白道面)位置的变化是引起章动的主要原因.目前天文学家已经分析得到章动周期共有263项之多,其中章动的主周期项,即18.6年章动项是振幅最大的项,它主要是由于白道的运动引起白道的升交点沿黄道向西运动,约18.6年绕行一周所致.因而,月球对地球的引力作用也有相同周期变化,在天球上它表现为天极在绕黄极作岁差运动的同时,还围绕其平均位置作周期为18.6年的运动.同样,太阳对地球的引力作用也具有周期性变化,并引起相应周期的章动. 2大气圈:大气层(aerosphere)又叫大气圈,地球就被这一层很厚的大气层包围着.大气层的成分主要有氮气,占78.1%;氧气占20.9%;氩气占0.93%;还有少量的二氧化碳、稀有气体(氦气、氖气、氩气、氪气、氙气氡气)和水蒸汽.大气层的空气密度随高度而减小,越高空气越稀薄.大气层的厚度大约在1000千米以上,但没有明显的界限.整个大气层随高度不同表现出不同的特点,分为对流层、平流层、中间层、暖层和散逸层,再上面就是星际空间了.
对流层在大气层的最低层,紧靠地球表面,其厚度大约为10至20千米.对流层的大气受地球影响较大,云、雾、雨等现象都发生在这一层内,水蒸气也几乎都在这一层内存在.这一层的气温随高度的增加而降低,大约每升高1000米,温度下降5~6℃.动、植物的生存,人类的绝大部分活动,也在这一层内.因为这一层的空气对流很明显,故称对流层.对流层以上是平流层,大约距地球表面20至50千米.平流层的空气比较稳定,大气是平稳流动的,故称为平流层.在平流层内水蒸气和尘埃很少,并且在30千米以下是同温层,其温度在-55℃左右.平流层以上是中间层,大约距地球表面50至85千米,这里的空气已经很稀薄,突出的特征是气温防高度增加而迅速降低,空气的垂直对流强烈.中间层以上是暖层,大约距地球表面100至800千米.暖层最突出的特征是当太阳光照射时,太阳光中的紫外线被该层中的氧原子大量吸收,因此温度升高,故称暖层.散逸层在暖层之上,为带电粒子所组成.
除此之外,还有两个特殊的层,即臭氧层和电离层.臭氧层距地面20至30千米,实际介于对流层和平流层之间.这一层主要是由于氧分子受太阳光的紫外线的光化作用造成的,使氧分子变成了臭氧.电离层很厚,大约距地球表面80千米以上.电离层是高空中的气体,被太阳光的紫外线照射,电离成带电荷的正离子和负离子及部分自由电子形成的.电离层对电磁波影响很大,我们可以利用电磁短波能被电离层反射回地面的特点,来实现电磁波的远距离通讯.
在地球引力作用下,大量气体聚集在地球周围,形成数千公里的大气层.气体密度随离地面高度的增加而变得愈来愈稀薄.探空火箭在3000公里高空仍发现有稀薄大气,有人认为,大气层的上界可能延伸到离地面6400公里左右.据科学家估算,大气质量约6000万亿吨,差不多占地球总质量的百万分之一,其中包括:氮78%、氧21%、氩0.93%、二氧化碳0.03%、氖0.0018%,此外还有水汽和尘埃等.

根据各层大气的不同特点(如温度、成分及电离程度等),从地面开始依次分为对流层、平流层、中间层、热层(电离层)和外大气层.

对流层
接近地球表面的一层大气层,空气的移动是以上升气流和下降气流为主的对流运动,叫做“对流层”.它的厚度不一, 其厚度在地球两极上空为8公里,在赤道上空为17公里,是大气中最稠密的一层.大气中的水气几乎都集中于此,是展示风云变幻的“大舞台”:刮风、下雨、降雪等天气现象都是发生在对流层内.

平流层
对流层上面,直到高于海平面50公里这一层,气流主要表现为水平方向运动,对流现象减弱,这一大气层叫做“平流层”,又称“同温层”.这里基本上没有水气,晴朗无云,很少发生天气变化,适于飞机航行.在20~30公里高处,氧分子在紫外线作用下,形成臭氧层,像一道屏障保护着地球上的生物免受太阳高能粒子的袭击.
中间层
平流层以上,到离地球表面85公里,叫做“中间层”,又称“散逸层”.中间层以上,到离地球表面500公里,叫做“热层”.在这两层内,经常会出现许多有趣的天文现象,如极光、流星等.人类还借助于热层,实现短波无线电通信,使远隔重洋的人们相互沟通信息,因为热层的大气因受太阳辐射,温度较高,气体分子或原子大量电离,复合机率又少,形成电离层,能导电,反射无线电短波.

外大气层
热层顶以上是外大气层,延伸至距地球表面1000公里处.这里的温度很高,可达数千度;大气已极其稀薄,其密度为海平面处的一亿亿分之一.
大气层有多厚,这的确是一个很吸引人的问题.人类经过不懈地探索和追求,对大气层的认识越来越清晰了.整个大气层可以分成几个层.
从地面到10~12千米以内的这一层空气,它是大气层最底下的一层,叫做对流层.主要的天气现象,如云、雨、雪、雹等都发生在这一层里.
在对流层的上面,直到大约50千米高的这一层,叫做平流层.平流层里的空气比对流层稀薄得多了,那里的水汽和尘埃的含量非常少,所以很少有天气现象了.
从平流层以上到80千米这一层,有人称它为中间层,这一层内温度随高度降低.
在80千米以上,到500千米左右这一层的空间,叫做热层,这一层内温度很高,昼夜变化很大.
从地面以上大约50千米开始,到大约1000千米高的这一层,叫做电离层.美丽的极光就出现在电离层中.
在离地面500千米以上的叫外大气层,也叫磁力层,它是大气层的最外层,是大气层向星际空间过渡的区域,外面没有什么明显的边界.在通常情况下,上部界限在地磁极附近较低,近磁赤道上空在向太阳一侧,约有9~10个地球半径高,换句话说,大约有65000千米高.在这里空气极其稀薄.
通常把1000千米之内,即电离层之内作为大气的高度,即大气层厚1000千米
参考资料:http://www.cpus.gov.cn/kpwd/content.asp?id=348
从地面到10~12千米以内的这一层空气,它是大气层最底下的一层,叫做对流层.主要的天气现象,如云、雨、雪、雹等都发生在这一层里.
在对流层的上面,直到大约50千米高的这一层,叫做平流层.平流层里的空气比对流层稀薄得多了,那里的水汽和尘埃的含量非常少,所以很少有天气现象了.
从平流层以上到80千米这一层,有人称它为中间层,这一层内温度随高度降低.
在80千米以上,到500千米左右这一层的空间,叫做热层,这一层内温度很高,昼夜变化很大.
从地面以上大约50千米开始,到大约1000千米高的这一层,叫做电离层.美丽的极光就出现在电离层中.
在离地面500千米以上的叫外大气层,也叫磁力层,它是大气层的最外层,是大气层向星际空间过渡的区域,外面没有什么明显的边界.在通常情况下,上部界限在地磁极附近较低,近磁赤道上空在向太阳一侧,约有9~10个地球半径高,换句话说,大约有65000千米高.在这里空气极其稀薄.3岩石圈:岩石圈(lithosphere)
地球最外层平均厚度约100千米的带有弹性的坚硬岩石.由地壳和上地幔顶部组成.岩石圈下面是软流圈.岩石圈可分为6大板块:欧亚板块、太平洋板块、美洲板块、非洲板块、印度-大洋洲板块、南极洲板块 .还有一些较小板块镶嵌其间.板块边界有4种类型:海岭洋脊板块发散带、岛孤海沟板块消减带、转换断层带和大陆碰撞带.(见地球内部构造).
地表形态的塑造过程也是岩石圈物质的循环过程,它们存在的基础是岩石圈三大类岩石——岩浆岩、变质岩和沉积岩的变质转化.
在地球内部压力作用下,岩浆沿着岩石圈的薄弱地带侵入岩石圈上部或喷出地表,冷却凝固形成岩浆岩.裸露地表的岩浆岩在风吹、雨打、日晒以及生物作用下,组件崩解成为砾石、沙子和泥土.这些碎屑被风、流水等搬运后沉积下来,经过固结成岩作用,形成沉积岩.同时,这些已经生成的岩石,在一定的温度和压力下发生变质作用,形成变质岩.岩石在岩石圈深处或岩石圈以下发生重熔再生作用,又成为新的岩浆.岩浆在一定的条件下再次侵入或喷出地表,形成新的岩浆岩,并与其他岩石一起再次接受外力的风化、侵蚀、搬运和堆积.如此,周而复始,使岩石圈的物质处于不断的循环转化之中.
我们今天看到的山系和盆地,以及流水、冰川、风成地貌等,是岩石圈物质循环在地表留下的痕迹.
另外对于地球岩石圈,除表面形态外,是无法直接观测到的.它主要由地球的地壳和地幔圈中上地幔的顶部组成,从固体地球表面向下穿过地震波在近33公里处所显示的第一个不连续面(莫霍面),一直延伸到软流圈为止.岩石圈厚度不均一,平均厚度约为100公里.由于岩石圈及其表面形态与现代地球物理学、地球动力学有着密切的关系,因此,岩石圈是现代地球科学中研究得最多、最详细、最彻底的固体地球部分.由于洋底占据了地球表面总面积的2/3之多,而大洋盆地约占海底总面积的45%,其平均水深为4000~5000米,大量发育的海底火山就是分布在大洋盆地中,其周围延伸着广阔的海底丘陵.因此,整个固体地球的主要表面形态可认为是由大洋盆地与大陆台地组成,对它们的研究,构成了与岩石圈构造和地球动力学有直接联系的"全球构造学"理论.

1地球为了锻炼身体,也要运动!
2不小气的基本上就大气
3如果你穿的多,身上不咋冷,就比较严实,裹一圈,就是岩石圈

1地球运动
地球自转 方向:自西向东
周期:一个恒星日(23小时56分4秒)
自转线速度:纬度越高 自转线速度越小 纬度越低 自转现速度越大 赤道最大 为1670km每小时
自转角速度:除南北2极点为0外都为15°每小时
地球自转的地理意义:
...

全部展开

1地球运动
地球自转 方向:自西向东
周期:一个恒星日(23小时56分4秒)
自转线速度:纬度越高 自转线速度越小 纬度越低 自转现速度越大 赤道最大 为1670km每小时
自转角速度:除南北2极点为0外都为15°每小时
地球自转的地理意义:
1.产生昼夜交替
2.产生地方时
3.产生地球自传偏向力
4.对地球的形状产生影响
地球公转:公转方向:自西向东
公转周期:365日5时48分46秒
地球公转的地理意义:
产生黄赤交角:太阳直射点的南北移动和正午太阳高度角的变化
昼夜长短变化和极昼极夜
四季更替
2大气圈:
大气组成:水汽 尘埃 干洁空气
大气的垂直分层:
分层依据:大气的温度 密度等物理性质
分层:对流层
……
额 额 打撒了 伐高兴打了
侬撒区额
留咋邮箱 无拿无笔记照片拍下来发被侬

收起

1地球运动 2大气圈 3岩石圈是上海的!知识结构整理帮忙整理一下 地球的外部圈层中最活跃的是水圈 岩石圈 大气圈 哪一个? 地球圈层中,最活跃的是( ).A.大气圈 B.软流圈 C.岩石圈 D.水圈 地球岩石圈的运动方式 下列关于生物圈的说法,正确的是1生物圈就是地球上说有的生物或非生物成分2生物圈包括大气圈,水圈,岩石圈3生物圈是指地球上的人类及人类生活的环境4生物圈是指地球上所有生物机极其生 陆地生物的生活场所是(大气圈 水圈 岩石圈)? 地球上各种生物的生存场所是( )A、大气圈的全部,水圈的全部,岩石圈的全部 B、大气圈的底部,水圈的上部,岩石圈的全部 C、大气圈的全部,水圈的上部,岩石圈的表面 D、大气圈的底部,水圈 生物圈中的大气圈,水圈和岩石圈是截然分开的吗?生物圈中的大气圈,水圈和岩石圈是截然分开? 陆生生物的生活场所是( ) A.水圈 B.岩石圈 C.大气圈 D.岩石圈以下 地球内部结构到底有什么东西?人们都这样回答整个地球总共包括八个圈层1大气圈、2水圈、3生物圈、4岩石圈 5地幔圈、6外核液体圈、7、固体内核圈 8软流圈我想问的是怎么知道有8个圈而且 大气圈,水泉圈,岩石圈那个是属于地球内部圈层? 大气圈水圈岩石圈生物圈之间的关系 生活在大气圈,水圈,岩石圈的生物 大气圈、水圈、岩石圈,哪里的生物多? 大气圈的厚度是最大的?在 大气圈 水圈 岩石圈 中大气圈的厚度是最大的吗?另外生物圈中包含所有生物为什么不对? 从太空中看地球,大气圈,岩石圈是什么颜色从太空中看地球,水、大气圈、岩石圈是什么颜色 生物圈中的大气圈,水圈和岩石圈是分开的吗?说明你的理由. 生物中的大气圈、水圈、岩石圈是截然分开的吗?说说你的理由