数学在科学发展中的作用

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 18:38:31

数学在科学发展中的作用
数学在科学发展中的作用

数学在科学发展中的作用
微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分是建立在实数、函数和极限的基础上的. \x0d
极限和微积分的概念可以追溯到古代.到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学.他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的.直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化. \x0d
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用.特别是计算机的发明更有助于这些应用的不断发展. \x0d
\x0d
微积分学是微分学和积分学的总称. \x0d
\x0d
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着.因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了. \x0d
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学.微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造. \x0d
\x0d
微积分学的建立 \x0d
\x0d
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了. \x0d
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想.作为微分学基础的极限理论来说,早在古代以有比较清楚的论述.比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”.三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣.”这些都是朴素的、也是很典型的极限概念. \x0d
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素.归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题.第二类问题是求曲线的切线的问题.第三类问题是求函数的最大值和最小值问题.第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力. \x0d
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论.为微积分的创立做出了贡献. \x0d
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作.他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题). \x0d
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的. \x0d
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合.他把连续变量叫做流动量,把这些流动量的导数叫做流数.牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法). \x0d
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》.就是这样一片说理也颇含糊的文章,却有划时代的意义.他以含有现代的微分符号和基本微分法则.1686年,莱布尼茨发表了第一篇积分学的文献.他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响.现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的. \x0d
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力. \x0d
前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的.微积分也是这样. \x0d
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立.英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年. \x0d
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的.比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年.他们的研究各有长处,也都各有短处.那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年. \x0d
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的.他们在无穷和无穷小量这个问题上,其说不一,十分含糊.牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说.这些基础方面的缺陷,最终导致了第二次数学危机的产生. \x0d
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础.才使微积分进一步的发展开来. \x0d
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者.在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… \x0d
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命.微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩. \x0d
\x0d
微积分的基本内容 \x0d
\x0d
研究函数,从量的方面研究事物运动变化是微积分的基本方法.这种方法叫做数学分析. \x0d
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分.微积分的基本概念和内容包括微分学和积分学. \x0d
微分学的主要内容包括:极限理论、导数、微分等. \x0d
积分学的主要内容包括:定积分、不定积分等. \x0d
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律.此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展.并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展.\x0d
参考资料:http://www.ikepu.com/datebase/briefing/maths/differetial_integral_calculus.htm" http://www.ikepu.com/datebase/briefing/maths/differetial_integral_calculus.htm\x0d
微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分是建立在实数、函数和极限的基础上的. \x0d
极限和微积分的概念可以追溯到古代.到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学.他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的.直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化. \x0d
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用.特别是计算机的发明更有助于这些应用的不断发展. \x0d
\x0d
微积分学是微分学和积分学的总称. \x0d
\x0d
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着.因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了. \x0d
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学.微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造. \x0d
\x0d
微积分学的建立 \x0d
\x0d
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了. \x0d
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想.作为微分学基础的极限理论来说,早在古代以有比较清楚的论述.比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”.三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣.”这些都是朴素的、也是很典型的极限概念. \x0d
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素.归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题.第二类问题是求曲线的切线的问题.第三类问题是求函数的最大值和最小值问题.第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力. \x0d
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论.为微积分的创立做出了贡献. \x0d
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作.他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题). \x0d
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的. \x0d
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合.他把连续变量叫做流动量,把这些流动量的导数叫做流数.牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法). \x0d
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》.就是这样一片说理也颇含糊的文章,却有划时代的意义.他以含有现代的微分符号和基本微分法则.1686年,莱布尼茨发表了第一篇积分学的文献.他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响.现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的. \x0d
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力. \x0d
前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的.微积分也是这样. \x0d
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立.英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年. \x0d
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的.比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年.他们的研究各有长处,也都各有短处.那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年. \x0d
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的.他们在无穷和无穷小量这个问题上,其说不一,十分含糊.牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说.这些基础方面的缺陷,最终导致了第二次数学危机的产生. \x0d
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础.才使微积分进一步的发展开来. \x0d
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者.在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… \x0d
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命.微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩. \x0d
\x0d
微积分的基本内容 \x0d
\x0d
研究函数,从量的方面研究事物运动变化是微积分的基本方法.这种方法叫做数学分析. \x0d
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分.微积分的基本概念和内容包括微分学和积分学. \x0d
微分学的主要内容包括:极限理论、导数、微分等. \x0d
积分学的主要内容包括:定积分、不定积分等. \x0d
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律.此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展.并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展. \x0d
\x0d
参考资料:http://www.ikepu.com/datebase/briefing/maths/differetial_integral_calculus.htm" http://www.ikepu.com/datebase/briefing/maths/differetial_integral_calculus.htm \x0d
\x0d
http://www.ikepu.com/maths/maths_branch/calculi_total.htm" http://www.ikepu.com/maths/maths_branch/calculi_total.htm出售百度知道自动回复外挂
脱机登录自动寻找正确答案,
自动回复
自动搜索最新问题
自动发广告
QQ:99306030

20世纪数学科学的巨大发展,比以往任何时代都更加令人信服地确立了数学作为整个科学技术的基础的地位。数学物理、数学化学、生物数学、数理经济学、数理地质学、数理语言学、数值天气预报、数学考古......一系列边缘学科的涌现, 表明数学的应用已突破传统的范围而向人类一切知识领域渗透。 拉东(Radon)变换应用于CT扫描、小波分析应用于通讯技术, 以及工业数学的兴起等更反映了数学正越来越直接地为人类生活...

全部展开

20世纪数学科学的巨大发展,比以往任何时代都更加令人信服地确立了数学作为整个科学技术的基础的地位。数学物理、数学化学、生物数学、数理经济学、数理地质学、数理语言学、数值天气预报、数学考古......一系列边缘学科的涌现, 表明数学的应用已突破传统的范围而向人类一切知识领域渗透。 拉东(Radon)变换应用于CT扫描、小波分析应用于通讯技术, 以及工业数学的兴起等更反映了数学正越来越直接地为人类生活与物质生产作出贡献。 随着科学数学化趋势的增长,数学在提高全民素质、培养适应现代化需要的各级人才方面还具有特殊的教育功能。 数学科学,已成为推进人类文明的不可或缺的重要因素。
现代数学这种空前广泛的渗透与应用,与这门科学自身的进化密切关联着。20世纪数学科学的特征之一是: 数学结构等抽象观点的兴起和对数学基础的深入考察,将这门科学的核心部分引向高度抽象化的道路。 这方面的发展为抽象代数、代数拓扑学、泛函分析、测度与积分理论、数理逻辑等大量新领域的开拓指引了方向, 同时也推动经典数学如数论、代数几何、微分几何、李群、复分析、调和分析等分支的深化发展。 核心数学所创造的许多高度抽象的语言、结构及理论, 不仅已成为数学内部联系、统一各分支的纽带,而且被反复证实正是其它科学技术领域中普遍适用的工具。

收起

数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。
高新技术的基础是应用科学,而应用科学的基础是数...

全部展开

数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。
高新技术的基础是应用科学,而应用科学的基础是数学。这样,数学必将成为社会高速发展的最有力的加速器,推动社会前进;数学将是我们开启科学殿堂大门的金钥匙,帮助我们拥有知识宝库;数学将为我们插上最有力的翅膀,让我们飞向灿烂的明天。
在科学发展的进程中,数学的作用日见凸现。一方面,高新技术的基础是应用科学,而应用科学的基础是数学;另一方面,随着计算机科学的迅速发展,数学兼有了科学与技术的双重身份,现代科学技术越来越表现为一种数学技术。当代科学技术的突出特点是定量化,而定量化的标志就是运用数学思想和方法。精确定量思维是对当代科技人员的共同要求,所谓定量思维指人们从实际中提炼数学问题,抽象为数学模型,用数学计算求出此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解题的计算软件,以便得到更广泛和更方便的应用。高技术的高精度、高速度、高自动、高质量、高效率等特点,无一不是通过数学模型和数学方法并借助计算机的控制来实现的。
电子计算机是数学与工程技术相结合的产物,而在其发展的每个历史关头,数学都起了关键的作用。
一位物理学家写道:“贯穿整个物理科学的曲折变化的历史,有一个仍然不变的因素,就是数学想像力的绝对重要性。每个世纪都有它特有的科学预见和它特有的数学风格。每个世纪物理科学的主要进展都是在经验的观察与纯数学的直觉相结合的引导下取得的。对于一个物理学家来说,数学不仅是计算现象的工具,也是得以创造新理论的概念和原理的主要源泉。”
我国研制原子弹,试验次数仅为西方国家的十分之一,从原子弹爆炸到氢弹研制成功,只花了2年零3个月,大大低于美国所花的时间,其原因之一是选派了许多优秀数学家参加了研制工作。
长江三峡枢纽工程是举世瞩目的。按照设计,三峡工程水电装机总容量为1768万千瓦,年发电量为840亿度,建成后的三峡大坝将是一座高达200米、长近2000米的混凝土拦江大坝,简直是一座混凝土的小山。建造如此宏伟的工程,要解决无数难题,其中最重要的问题之一是大体积的混凝土在凝结过程中化学反应产生的热量。这种巨大的热量将危及大坝的安全。我国科学家自行研制的可以动态模拟大体积混凝土的施工的温度、应力和徐变的计算机软件,可以用来分析、比较各种施工方案,设计最佳的施工过程控制,还可以用来对大坝建成后的运行期进行监控和测算,以保障大坝的安全。在长江三峡大坝的建设中,可以说数学功不可没。
数学在现代战争中有着举足轻重的作用。有人说,第一次世界大战是“化学战”(火药)。第二次世界大战是“物理战”(机械),现代战争是“数学战”(信息、计算机)。
1991年1月美国对伊拉克实施“沙漠风暴”行动前,美国曾严肃地考虑了一旦伊拉克点燃科威特的所有油井将会造成的后果。据美国《超级计算评论》杂志披露,五角大楼要求太平洋——赛拉研究公司研究此问题。该公司使用偏微分方程理论和数学模型方法,在进行了一系列模拟计算后得出结论:大火造成的烟雾可能导致一场重大的污染事件,它将波及波斯湾、伊朗南部、巴基斯坦和印度北部,但不会失去控制,不会造成全球性气候变化,不会对地球的生态和经济系统造成无可挽回的损失。这样才促使美国下定决心实施“沙漠风暴”行动。
1998年我国大洪水期间,为了确保武汉、南京等大工业城市的安全,有关部门面临荆江分洪的问题。20吨炸药已经装好,爆破进入倒计时,但这一方案在最后一刻被放弃。据当时的新闻报道,由多方专家组成的水利专家组用数学里的有限元法对荆江大堤的体积渗漏进行了测算,确定出一个安全系数。按照这个结果,沙市水位即使涨到45.3米,也可以坚持对长江大堤严防死守,不用分

收起

靠,这么长,表示 只求 300+字