设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 20:25:57

设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA
设A为数域P上的n维线性空间V的线性变换,且A^2=A
证明:(1)V=A的核加A的值域为直和
(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA

设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA
(1) 两个子空间的和是直和只需要证明它们的交只有零向量.
设Y∈ker(A)∩im(A),则AY = 0且存在X使Y = AX.
∵A² = A,∴Y = AX = A²X = A(AX) = AY = 0.即ker(A)∩im(A) = {0},二者的和为直和.
(2) 充分性:对X∈ker(A),AX = 0.∴A(BX) = BAX = 0,BX∈ker(A).ker(A)是B的不变子空间.
而对Y∈im(A),存在X使Y = AX,∴BY = BAX = A(BX)∈im(A).im(A)也是B的不变子空间.
必要性:ker(A)的维数为n-r(A),im(A)的维数为r(A).已证二者的和是直和,于是V = ker(A)+im(A).
对X∈ker(A),有AX = 0,∴BAX = 0.∵ker(A)是B的不变子空间,∴BX∈ker(A),∴ABX = 0 = BAX.
而对Y∈im(A),存在X使Y = AX,∴AY = A²X = AX = Y,∴BAY = BY.
∵im(A)是B的不变子空间,∴存在Z使BY = AZ,∴ABY = A²Z = AZ = BY = BAY.
AB与BA在ker(A)和im(A)上的限制相等.又∵V = ker(A)+im(A),∴在V上有AB = BA.

设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T 设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA 设V为数域P上的线性空间,A是V上的变换,任意α,β∈v,任意k∈P,A应满足哪些条件才是线性变换? 设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核. v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T 高等代数作业一、 线性方程组的基础解系,不变子空间,线性变换的特征向量,线性空间的同构 二、 判断正误1.多项式f(x)在数域F上是可约的,则f(x)在F上一定有根.2.n维线性空间V上线性变换为数 设A为数域P上的线性空间V的线性变换,证明:①A可逆则A无0特征值;②A可逆,则A-1与A有相同的特征向量,若λ0为A的特征值,则λ0-1为A--1的特征值.膜拜了,谢谢您的热心回答,再问一道证明题啊, 再问刘老师一道证明题,麻烦您能回答啊!设A为数域P上的线性空间V的线性变换,证明:①A可逆则A无0特征值;②A可逆,则A-1与A有相同的特征向量,若λ0为A的特征值,则λ0-1为A--1的特征值. 线性变换:设A是数域P上偶数维线性空间V上的线性变换,那么A与-A具有相同的( )A特征值; B行列式; C特征多项式; D在同一基下的矩阵 向高手请教一道高代题……设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核. 线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公 设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:存在V的线性变换A,使A的值域是W1 ,核是W2 设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关于t的非平凡不变子空间. 1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵. 1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵. 设V是有理数域上的线性空间,V的维数是n,A与B是V的线性变换,B可对角化,AB-BA=A证:存在正整数m,使得A的m次幂是零变换 设T是数域P上n维线性空间V的一个线性变换,且T^2=T,R(T)表示T的值域,N(T)表示T的零空间或核,证明:1、N(T)=R(I-T),其中I表示线性空间V上的单位变换;V=R(T)+N(T) 设W是线性空间V的一个子空间,A是V上的线性变换,W是A的不变子空间的条件是?