公式照到了.有没有和公式对应的例题.

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 10:03:14

公式照到了.有没有和公式对应的例题.
公式照到了.有没有和公式对应的例题.

公式照到了.有没有和公式对应的例题.
16.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
函数
17.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;
(1)若函数 是偶函数,则 ;若函数 是偶函数,则 .
(2)对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
(3)若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
19.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
20.函数 的图象的对称性
(1)函数 的图象关于直线 对称 .
(2)函数 的图象关于直线 对称
.
21.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
22.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
23.互为反函数的两个函数的关系
.
若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
24.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
25.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,或 ,
或 ,或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
指数与对数
47.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
48.向量的数量积的运算律
(1) a•b= b•a (交换律);(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
49.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
50.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
51.a与b的数量积(或内积)
a•b=|a||b|cosθ.
52.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
53.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
54.两向量的夹角公式
(a= ,b= ).
55.平面两点间的距离公式
= (A ,B ).
56.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
57.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则
( ).
58.三角形的重心坐标公式
△ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
59.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 .
60.“按向量平移”的几个结论
(1)点 按向量a= 平移后得到点 .
(2) 函数 的图象 按向量a= 平移后得到图象 ,则 的函数解析式为 .
(3) 图象 按向量a= 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 .
(4)曲线 : 按向量a= 平移后得到图象 ,则 的方程为 .
(5) 向量m= 按向量a= 平移后得到的向量仍然为m= .
61.三角形五“心”向量形式的充要条件
设 为 所在平面上一点,角 所对边长分别为 ,则
(1) 为 的外心 .
(2) 为 的重心 .
(3) 为 的垂心 .
(4) 为 的内心 .
(5) 为 的 的旁心 .
不等式
62.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(3)
(4)柯西不等式

(5) .
63.极值定理
已知 都是正数,则有
(1)若积 是定值 ,则当 时和 有最小值 ;
(2)若和 是定值 ,则当 时积 有最大值 .
推广 已知 ,则有
(1)若积 是定值,则当 最大时, 最大;
当 最小时, 最小.
(2)若和 是定值,则当 最大时, 最小;
当 最小时, 最大.
64.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

.
65.含有绝对值的不等式
当a> 0时,有
.
或 .
66.无理不等式
(1) .
(2) .
(3) .
67.指数不等式与对数不等式
(1)当 时,
;
.
(2)当 时,
;

直线方程
68.斜率公式
① ( 、 ).② k=tanα(α为直线倾斜角)
69.直线的五种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)截距式 ( 分别为直线的横、纵截距, )
(5)一般式 (其中A、B不同时为0).
70.两条直线的平行和垂直
(1)若 ,
① ;
② .
(2)若 , ,且A1、A2、B1、B2都不为零,
① ;
②两直线垂直的充要条件是 ;即:
71.夹角公式
(1) .
( , , )
(2) .
( , , ).
72. 到 的角公式
(1) .
( , , )
(2) .
( , , ).
直线 时,直线l1到l2的角是 .
73.四种常用直线系方程
(1)定点直线系方程:经过定点 的直线系方程为 (除直线 ),其中 是待定的系数; 经过定点 的直线系方程为 ,其中 是待定的系数.
(2)共点直线系方程:经过两直线 , 的交点的直线系方程为 (除 ),其中λ是待定的系数.
(3)平行直线系方程:直线 中当斜率k一定而b变动时,表示平行直线系方程.与直线 平行的直线系方程是 ( ),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是 ,λ是参变量.
74.点到直线的距离
(点 ,直线 : ).
75. 或 所表示的平面区域
设直线 ,若A>0,则在坐标平面内从左至右的区域依次表示 , ,若A<0,则在坐标平面内从左至右的区域依次表示 , ,可记为“x 为正开口对,X为负背靠背“.(正负指X的系数A,开口对指”<>",背靠背指"><")
76. 或 所表示的平面区域
设曲线 ( ),则
或 所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分.

77.圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是 、 ).
78.圆系方程
(1)过点 , 的圆系方程是

,其中 是直线 的方程,λ是待定的系数.
(2)过直线 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.
(3) 过圆 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.
79.点与圆的位置关系
点 与圆 的位置关系有三种
若 ,则
点 在圆外;
点 在圆上;
点 在圆内.
80.直线与圆的位置关系
直线 与圆 的位置关系有三种:
;
;
.
其中 .
81.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
;
;
;
;
.
82.圆的切线方程
(1)已知圆 .
①若已知切点 在圆上,则切线只有一条,其方程是
.
当 圆外时, 表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线.
(2)已知圆 .
①过圆上的 点的切线方程为 ;
②斜率为 的圆的切线方程为 .
椭圆
83.椭圆 的参数方程是 .
84.椭圆 焦半径公式
, ,
85.焦点三角形:P为椭圆 上一点,则三角形 的面积S= 特别地,若 此三角形面积为 ;
86.在椭圆 上存在点P,使 的条件是c≥b,即椭圆的离心率e的范围是 ;
87.椭圆的的内外部
(1)点 在椭圆 的内部 .
(2)点 在椭圆 的外部 .
88.椭圆的切线方程
(1)椭圆 上一点 处的切线方程是 .
(2)过椭圆 外一点 所引两条切线的切点弦方程是 .
(3)椭圆 与直线 相切的条件是 .
双曲线
89.双曲线 的焦半径公式
, .
90.双曲线的内外部
(1)点 在双曲线 的内部 .
(2)点 在双曲线 的外部 .
91.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为 渐近线方程: .
(2)若渐近线方程为 双曲线可设为 .
(3)若双曲线与 有公共渐近线,可设为 ( ,焦点在x轴上, ,焦点在y轴上).
92.双曲线的切线方程
(1)双曲线 上一点 处的切线方程是 .
(2)过双曲线 外一点 所引两条切线的切点弦方程是
.
(3双曲线 与直线 相切的条件是 .
93.到渐近线的距离等于虚半轴的长度(即b值)
抛物线
94.焦点与半径

95.焦半径公式
抛物线 ,C 为抛物线上一点,焦半径 .
96.过焦点弦长 .
对焦点在y轴上的抛物线有类似结论.
97.设点方法
抛物线 上的动点可设为P 或 P ,其中 .
二次函数
98. 的图象是抛物线:
(1)顶点坐标为 ;
(2)焦点的坐标为 ;
(3)准线方程是 .
99.抛物线的内外部
(1)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(2)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(3)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(4) 点 在抛物线 的内部 .
点 在抛物线 的外部 .
100.抛物线的切线方程
(1)抛物线 上一点 处的切线方程是 .
(2)过抛物线 外一点 所引两条切线的切点弦方程是 .
(3)抛物线 与直线 相切的条件是 .
101.过抛物线 (p>0)的焦点F的直线与抛物线相交于
圆锥曲线共性问题
120.两个常见的曲线系方程
(1)过曲线 , 的交点的曲线系方程是
( 为参数).
(2)共焦点的有心圆锥曲线系方程 ,其中 .当 时,表示椭圆; 当 时,表示双曲线.
103.直线与圆锥曲线相交的弦长公式


(弦端点A
由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).
104.涉及到曲线上的点A,B及线段AB的中点M的关系时,可以利用“点差法:
比如在椭圆中:
105.圆锥曲线的两类对称问题
(1)曲线 关于点 成中心对称的曲线是 .
(2)曲线 关于直线 成轴对称的曲线是
.
106.“四线”一方程
对于一般的二次曲线 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 ,即得方程
,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.
立体几何
107.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;
(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.
108.证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.
109.证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;
(2)转化为线面平行;
(3)转化为线面垂直.
110.证明直线与直线的垂直的思考途径
(1)转化为相交垂直;
(2)转化为线面垂直;
(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
111.证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.
112.证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直.
113.空间向量的加法与数乘向量运算的运算律
(1)加法交换律:a+b=b+a.
(2)加法结合律:(a+b)+c=a+(b+c).
(3)数乘分配律:λ(a+b)=λa+λb.
114.平面向量加法的平行四边形法则向空间的推广
始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.
115.共线向量定理
对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.
三点共线 .
、 共线且 不共线 且 不共线.
116.共面向量定理
向量p与两个不共线的向量a、b共面的 存在实数对 ,使 .
推论 空间一点P位于平面MAB内的 存在有序实数对 ,使 ,
或对空间任一定点O,有序实数对 ,使 .
117.对空间任一点 和不共线的三点A、B、C,满足 ( ),则当 时,对于空间任一点 ,总有P、A、B、C四点共面;当 时,若 平面ABC,则P、A、B、C四点共面;若 平面ABC,则P、A、B、C四点不共面.
四点共面 与 、 共面
( 平面ABC).
118.空间向量基本定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.
推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使 .
119.射影公式
已知向量 =a和轴 ,e是 上与 同方向的单位向量.作A点在 上的射影 ,作B点在 上的射影 ,则
〈a,e〉=a•e
120.向量的直角坐标运算
设a= ,b= 则
(1)a+b= ;
(2)a-b= ;
(3)λa= (λ∈R);
(4)a•b= ;
121.设A ,B ,则
= .
122.空间的线线平行或垂直
设 , ,则

.
123.夹角公式
设a= ,b= ,则
cos〈a,b〉= .
推论 ,此即三维柯西不等式.
124.四面体的对棱所成的角
四面体 中, 与 所成的角为 ,则
.
125.异面直线所成角

=
(其中 ( )为异面直线 所成角, 分别表示异面直线 的方向向量)
126.直线 与平面所成角
( 为平面 的法向量).
127.若 所在平面若 与过若 的平面 成的角 ,另两边 , 与平面 成的角分别是 、 , 为 的两个内角,则
.
特别地,当 时,有
.
128.若 所在平面若 与过若 的平面 成的角 ,另两边 , 与平面 成的角分别是 、 , 为 的两个内角,则
.
特别地,当 时,有
.
129.二面角 的平面角
或 ( , 为平面 , 的法向量).
130.三余弦定理
设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为 ,AB与AC所成的角为 ,AO与AC所成的角为 .则 .
131.三射线定理
若夹在平面角为 的二面角间的线段与二面角的两个半平面所成的角是 , ,与二面角的棱所成的角是θ,则有 ;
(当且仅当 时等号成立).
132.空间两点间的距离公式
若A ,B ,则
= .
133.点 到直线 距离
(点 在直线 上,直线 的方向向量a= ,向量b= ).
134.异面直线间的距离
( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离).
135.点 到平面 的距离
( 为平面 的法向量, 是经过面 的一条斜线, ).
136.异面直线上两点距离公式
.
.
( ).
(两条异面直线a、b所成的角为θ,其公垂线段 的长度为h.在直线a、b上分别取两点E、F, , , ).
137.三个向量和的平方公式


138.长度为 的线段在三条两两互相垂直的直线上的射影长分别为 ,夹角分别为 ,则有
.
(立体几何中长方体对角线长的公式是其特例).
139.面积射影定理
.
(平面多边形及其射影的面积分别是 、 ,它们所在平面所成锐二面角的为 ).
140.斜棱柱的直截面
已知斜棱的侧棱长是 ,侧面积和体积分别是 和 ,它的直截面的周长和面积分别是 和 ,则
① .
② .
141.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.
142.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
143.欧拉定理(欧拉公式)
(简单多面体的顶点数V、棱数E和面数F).
(1) =各面多边形边数和的一半.特别地,若每个面的边数为 的多边形,则面数F与棱数E的关系: ;
(2)若每个顶点引出的棱数为 ,则顶点数V与棱数E的关系: .
144.球的半径是R,则
其体积 ,
其表面积 .
145.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为 的正四面体的内切球的半径为 ,外接球的半径为 .
146.柱体、锥体的体积
( 是柱体的底面积、 是柱体的高).
( 是锥体的底面积、 是锥体的高).
排列组合
147.分类计数原理(加法原理)
.
148.分步计数原理(乘法原理)
.
149.排列数公式
= = .( , ∈N*,且 ).
注:规定 .
150.排列恒等式
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
(6) .
151.组合数公式
= = = ( ∈N*, ,且 ).
152.组合数的两个性质
(1) = ;
(2) + = .
注:规定 .
153.组合恒等式
(1) ;
(2) ;
(3) ;
(4) = ;
(5) .
(6) .
(7) .
(8) .
(9) .
(10) .
154.排列数与组合数的关系
.
155.单条件排列
以下各条的大前提是从 个元素中取 个元素的排列.
(1)“在位”与“不在位”
①某(特)元必在某位有 种;②某(特)元不在某位有 (补集思想) (着眼位置) (着眼元素)种.
(2)紧贴与插空(即相邻与不相邻)
①定位紧贴: 个元在固定位的排列有 种.
②浮动紧贴: 个元素的全排列把k个元排在一起的排法有 种.
注:此类问题常用捆绑法;
③插空:两组元素分别有k、h个( ),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有 种.
(3)两组元素各相同的插空
个大球 个小球排成一列,小球必分开,问有多少种排法?
当 时,无解;当 时,有 种排法.
(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为 .
156.分配问题
(1)(平均分组有归属问题)将相异的 、 个物件等分给 个人,各得 件,其分配方法数共有 .
(2)(平均分组无归属问题)将相异的 • 个物体等分为无记号或无顺序的 堆,其分配方法数共有
.
(3)(非平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别得到 , ,…, 件,且 , ,…, 这 个数彼此不相等,则其分配方法数共有 .
(4)(非完全平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别得到 , ,…, 件,且 , ,…, 这 个数中分别有a、b、c、…个相等,则其分配方法数有 .
(5)(非平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号的 堆,且 , ,…, 这 个数彼此不相等,则其分配方法数有 .
(6)(非完全平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号的 堆,且 , ,…, 这 个数中分别有a、b、c、…个相等,则其分配方法数有 .
(7)(限定分组有归属问题)将相异的 ( )个物体分给甲、乙、丙,……等 个人,物体必须被分完,如果指定甲得 件,乙得 件,丙得 件,…时,则无论 , ,…, 等 个数是否全相异或不全相异其分配方法数恒有
.
157.“错位问题”及其推广
贝努利装错笺问题:信 封信与 个信封全部错位的组合数为
.
推广: 个元素与 个位置,其中至少有 个元素错位的不同组合总数为

.
158.不定方程 的解的个数
(1)方程 ( )的正整数解有 个.
(2) 方程 ( )的非负整数解有 个.
(3) 方程 ( )满足条件 ( , )的非负整数解有 个.
(4) 方程 ( )满足条件 ( , )的正整数解有 个.
159.二项式定理 ;
二项展开式的通项公式
.
概率
160.等可能性事件的概率
.
161.互斥事件A,B分别发生的概率的和
P(A+B)=P(A)+P(B).
162. 个互斥事件分别发生的概率的和
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
163.独立事件A,B同时发生的概率
P(A•B)= P(A)•P(B).
164.n个独立事件同时发生的概率
P(A1• A2•…• An)=P(A1)• P(A2)•…• P(An).
165.n次独立重复试验中某事件恰好发生k次的概率

期望与方差
166.离散型随机变量的分布列的两个性质
(1) ;
(2) .
167.数学期望

168.数学期望的性质
(1) .
(2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
169.方差

170.标准差
= .
171.方差的性质
(1) ;
(2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
172.方差与期望的关系
.
173.正态分布密度函数
,式中的实数μ, ( >0)是参数,分别表示个体的平均数与标准差.
174.标准正态分布密度函数
.
175.对于 ,取值小于x的概率
.


.
176.回归直线方程
,其中 .
177.相关系数
.
|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.
极限
178.特殊数列的极限
(1) .
(2) .
(3) ( 无穷等比数列 ( )的和).
179.函数的极限定理
.
180.函数的夹逼性定理
如果函数f(x),g(x),h(x)在点x0的附近满足:
(1) ;
(2) (常数),
则 .
本定理对于单侧极限和 的情况仍然成立.
181.几个常用极限
(1) , ( );
(2) , .
182.两个重要的极限
(1) ;
(2) (e=2.718281845…).
183.函数极限的四则运算法则
若 , ,则
(1) ;
(2) ;
(3) .
184.数列极限的四则运算法则
若 ,则
(1) ;
(2) ;
(3)
(4) ( c是常数).
导数
185. 在 处的导数(或变化率或微商)
.
186.瞬时速度
.
187.瞬时加速度
.
188. 在 的导数
.
189.函数 在点 处的导数的几何意义
函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 .
190.几种常见函数的导数
(1) (C为常数).
(2) .
(3) .
(4) .
(5) ; .
(6) ; .
191.导数的运算法则
(1) .
(2) .
(3) .
192.复合函数的求导法则
设函数 在点 处有导数 ,函数 在点 处的对应点U处有导数 ,则复合函数 在点 处有导数,且 ,或写作 .
193.常用的近似计算公式(当 充分小时)
(1) ; ;
(2) ; ;
(3) ;
(4) ;
(5) ( 为弧度);
(6) ( 为弧度);
(7) ( 为弧度)
194.判别 是极大(小)值的方法
当函数 在点 处连续时,
(1)如果在 附近的左侧 ,右侧 ,则 是极大值;
(2)如果在 附近的左侧 ,右侧 ,则 是极小值.
复数
195.复数的相等
.( )
196.复数 的模(或绝对值)
= = .
197.复数的四则运算法则
(1) ;
(2) ;
(3) ;
(4) .
198.复数的乘法的运算律
对于任何 ,有
交换律: .
结合律: .
分配律: .
199.复平面上的两点间的距离公式
( , ).
200.向量的垂直
非零复数 , 对应的向量分别是 , ,则
的实部为零 为纯虚数
(λ为非零实数).

请问是什么公式呢

公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=...

全部展开

公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
其他三角函数知识:
同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2
积化和差公式
⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统