矩阵谱分解定理的唯一性证明设A是一个n阶可对角化矩阵,A的谱为σ(A)={λ1 ,λ2,...,λ} (即A的n个不相同的特征值为λ1,λ2,...λs,每个特征值的充数为ks) 则存在唯一一组s个n阶方阵P1 P2...Ps,满

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 05:58:40

矩阵谱分解定理的唯一性证明设A是一个n阶可对角化矩阵,A的谱为σ(A)={λ1 ,λ2,...,λ} (即A的n个不相同的特征值为λ1,λ2,...λs,每个特征值的充数为ks) 则存在唯一一组s个n阶方阵P1 P2...Ps,满
矩阵谱分解定理的唯一性证明
设A是一个n阶可对角化矩阵,A的谱为σ(A)={λ1 ,λ2,...,λ} (即A的n个不相同的特征值为λ1,λ2,...λs,每个特征值的充数为ks) 则存在唯一一组s个n阶方阵P1 P2...Ps,满足:①A=λ1*P1+λ2*P2+...+λs*Ps ②Pi*Pj=0 (i≠j);Pi*Pi=Pi ③P1+P2+.+Ps=E(E为n阶单位阵) ⑤r(Pi)=ki
对上述定理的唯一性证明.提示要用到矩阵的满秩分解.

矩阵谱分解定理的唯一性证明设A是一个n阶可对角化矩阵,A的谱为σ(A)={λ1 ,λ2,...,λ} (即A的n个不相同的特征值为λ1,λ2,...λs,每个特征值的充数为ks) 则存在唯一一组s个n阶方阵P1 P2...Ps,满
定理4.2.1么.
设A=∑λiGi 和A=∑λiPi
→ AGi=λiGi ,APj=λjPj ,i=!j
→ APjGi=λiPjGi,AGiPj=λjGiPj
→ λiPjGi=λjPjGi ,i=!j
→PjGi=0
→Gi=InGi=(∑Pi)Gi=PiGi,Pi=PiIn=Pi(∑Gi)=PiGi
→Pi=Gi

矩阵谱分解定理的唯一性证明设A是一个n阶可对角化矩阵,A的谱为σ(A)={λ1 ,λ2,...,λ} (即A的n个不相同的特征值为λ1,λ2,...λs,每个特征值的充数为ks) 则存在唯一一组s个n阶方阵P1 P2...Ps,满 设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.备注:存在性已证出,主要是我在证唯一性的时候方法太复杂,是逐个去证T的列向量唯一. 设A是n阶的矩阵,证明:n 设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆 设A,B为n阶矩阵,如果B为矩阵方程AXA=A的唯一解,证明:A为矩阵方程BXB=B的解 设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明:具体题目请看图片 矩阵唯一的证明题:设A是m*n阶矩阵,如果存在G(也是m*n阶矩阵)使得(1)AGA=A;(2)GAG=G;(3)(AG)的转置=AG;(4)(GA)的转置=GA;证明G是唯一的. 设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵? 设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1 设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值. 看看这个线性代数证明题咋证明啊?设m*n阶矩阵A的秩为m,n*(n-m)阶矩阵B的秩为n-m,又AB不=0,向量(阿尔法)是齐次方程组Ax=0的一个解向量,证明:存在唯一的一个n-m维列向量(贝塔)使(阿尔法 设n阶矩阵A的任意一行的元素之和都是a 证明a是矩阵A的一个特征值 求a对应的特征向量 设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0 设A=(aij)和B=(bij)是n*n的n阶正定矩阵,证明:矩阵C=(aijbij)这个n*n的矩阵也是正定矩阵.会追加1-2倍的设A=(aij)和B=(bij)是n*n的n阶正定矩阵,证明:矩阵C=(aijbij)这个n*n的矩阵也是正定矩阵. 设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值.线性代数的证明体, 求一题关于特征值的数学证明题设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值. 设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1) 一个线代的证明题,什么思路?设A是n×m阶矩阵, B是m×n阶矩阵, 则这两个行列式相等:|En-AB|=|Em-BA|,E是单位矩阵.如何证明?